Slide # 1

Slide # 1

Far far away, behind the word mountains, far from the countries Vokalia and Consonantia, there live the blind texts Read More

Slide # 2

Slide # 2

Far far away, behind the word mountains, far from the countries Vokalia and Consonantia, there live the blind texts Read More

Slide # 3

Slide # 3

Far far away, behind the word mountains, far from the countries Vokalia and Consonantia, there live the blind texts Read More

Slide # 4

Slide # 4

Far far away, behind the word mountains, far from the countries Vokalia and Consonantia, there live the blind texts Read More

Slide # 5

Slide # 5

Far far away, behind the word mountains, far from the countries Vokalia and Consonantia, there live the blind texts Read More

Thursday, December 22, 2011

KEAMANAN WIRELESS LAN : TEKNIK PENGAMANAN ACCESS POINT


Abstract : Wireless Local Area Network (WLAN) is vulnerable to attacks due to the use of radio frequency, which encounters data revelation. If critical and sensitive data is to be transmitted on air, it must be protected and access must be controlled. This paper describes about wireless security in the physical layer, dealing namely with Access points (AP) and a bare minimum wireless security framework specifying the essential and desired components of wireless security . It is recommended to secure wireless LANs with a layered approach. Where best to begin securing the network than starting with the physical layer?
Keywords : Wireless Security, Access point, MAC addresss Filter, Service Set Identifier (SSID), Wired Equivalent Privacy (WEP), Wi-Fi Protected Access (WPA), Extensible Authentication Protocol (EAP)
Tulisan ini sebelumnya pernah dimuat di Jurnal Matrik, Vol 8 no 3, Desember 2006

1.PENDAHULUAN

Jaringan wireless benar-benar berbeda dengan jaringan kabel, yang secara fisik lebih aman. Informasi ditransmisikan melalui melalui gelombang elektromagnetik pada frekuensi radio dimana siapa saja bisa mentransmisikan dan mennerima data. Signal disebarkan tidak menggunakan media kabel. Sehingga WLAN sangat rawan untuk disadap. Kinerja WLAN yang paling menonjol adalah jaringan tanpa kabel dan mobilitas dari alat tersebut. Akan tetapi pertukaran data menggunakan frekuensi radio di udara sangat mudah disadap oleh orang lain menggunakan tools sniffer.
Standar 802.11 merupakan standar jaringan wireless yang dikeluarkan oleh Electrical and Electronics Engineers (IEEE). Standar 802.11 awalnya memiliki dua tujuan utama yaitu : 1) mudah diakses; 2) koneksi. Dengan kata lain, 802.11 dibuat sebagai ‘open’ standard.
Saat ini banyak kekhawatiran mengenai keamanan wireless. Dengan menggunakan media wireless maka kita tidak perlu menggunakan konektivitas secara fisik yang bisa digunakan di rumah ataupun di tempat kita bekerja. Untuk jaringan wireless biasanya digunakan wireless access point yang berfungsi layaknya radio transmitter. Peralatan wireless menggunakan gelombang radio yang bisa melalui/menembus diding maupun gedung. Dengan kelebihannya ini maka dengan menggunakan media wireless maka jaringan LAN di rumah maupun diperkantoran menjadi sangat fleksibel. Tapi di sisi lain kelemahannya adalah koneksi ke jaringan lokal bagi penyusup menjadi lebih mudah. Sehingga perlu sekali pertimbangan keamanan untuk mencegah akses ilegal ke jaringan dan data.
Kurangnya perhatian terhadap keamanan wireless bukanlah hal yang bijaksana, karena merancang jaringan dengan perencanaan keamanan dari awal sangatlah menghemat waktu, tenaga bahkan uang. Pencegahan di tahap awal merupakan solusi terbaik. Di beberapa titik wireless LAN terkoneksi ke jaringan backbone, memungkinkan hacker untuk menggunkana wireless LAN untuk menyusup ke jaringan.
Untuk mendapatkan jaringan wireless dengan keamanan sempurna merupakan pekerjaan yang hampir tidak mungkin. Akan tetapi pencegahan tetap harus dilakukan ketika kita merancang jaringan wireless. Hal ini berarti kita harus benar-benar memperhatikan access point. Access point harus yang pertama kali kita perhatikan untuk mengkonfigurasi jaringan wireless dengan keamanan yang baik.

3. PEMBAHASAN
3.1. Resiko dan Ancaman Keamanan Wireless
Beberapa hal yang menjadi ancaman bagi keamanan wireless antara lain :
Beberapa hal yang menjadi ancaman bagi keamanan wireless antara lain :

    Spectrum Analysis: Frequency Hopping Spread Spectrum (FHSS) merupakan standar transmisi wireless, yang mendistribusikan gelombang wireless dalam bentuk frekuensi yang berbeda. Sinyal FHSS mudah sekali dilihat spectrum analysisnya, dan peralatan FHSS de-scrambling yaitu alat untuk mengambil alih frekuensi gelombang saat ini sudah di jual di pasaran.
    Open dan Invisible Access points: Access point (AP) merupakan penghubung perangkat wireless ke jaringan fisik (LAN). Gelombang wireless tidak bisa dibatasi secara fisik dan bisa menjangkau area yang berdekatan dengan access point. Akibatnya, informasi bisa dianalisa dan diserang dengan metoda statistik. Scanning secara periodik bisa menampakkan AP tersembunyi yang terpasang di jaringan kabel.
    Overlapping Access point: Sistem modern (seperti Windows XP) akan secara otomatis meminta terhubung dan merekonfigurasi sistem saat user secara tak sengaja masuk ke zona baru atau ke zona wireless yang sinyalnya lebih kuat tanpa sepengetahuan user. Untuk mencegah kebocoran keamanan, peralatan wireless yang memiliki fungsi penting seharusnya dikunci hanya untuk zona keamanan atau access point masing-masing.
    Access point Tersamar : Beberapa perangkat wireless komputer yang kompatibel dengan software seperti HostAP bisa bertindak sebagai AP – AP ini bisa digunakan sebagai penyamaran wireless station yang lain. User name dan password yang berhubungan dengan detail login (MAC dan SSID) dapat dengan mudah didapat dari stasiun wireless yang meminta koneksi dari suatu AP palsu. AP palsu tersebut bisa mengambil alih client wireless station dan teknik-teknik enkripsi seperti VPN tuneling tak berguna karena informasi masih bisa dibaca.
    Identifikasi MAC & SSID: Access points seringkali dikonfigurasikan untuk mengidentifikasi perangkat yang berhak terkoneksi berdasarkan MAC addresss yang uniq dan SSID umum yang disharing dalam suatu subnet. Bentuk pengamanan ini tidak sepenuhnya handal. Jika MAC addresss dan SSID kurang terenkrip dengan baik, seorang hacker bisa menggunakan tools seperti Ethereal dan Kismet untuk menscanning traffic kemudian mengekstrak nilai aktualnya.
    Flooding dan DoS attacks: Jamming, flooding dan Denial of Service attacks sangat memungkinkan di WLAN. ‘Denial of Service attacks bisa dilakukan dengan mengkonfigurasi sebuah laptop sebagai suatu AP dan kemudian membanjiri gelombang dengan perintah ‘disassociate’ yang memaksa semua stasiun yang ada dalam jangkauan untuk memutuskan diri dari WLAN.

3.2. Pengamanan Wireless Access Point
Daerah diantara Access point dengan pengguna merupakan daerah dengan kemungkinan gangguan keamanan paling tinggi dari jaringan nirkabel. Daerah ini merupakan daerah bebas, dimana komunikasi data dilakukan melalui frekuensi radio sehingga berbagai gangguan keamanan dapat terjadi di sini. Secara umum gangguan keamanan yang ada di daerah antara Access point dengan pengguna adalah: otentikasi dan eavesdroping (penyadapan). Access point harus bisa menentukan apakah seorang pengguna yang berusaha membangun koneksi ke jaringan tersebut memiliki hak akses atau tidak dan juga berusaha agar komunikasi dengan pengguna dilakukan secara aman. Selama ini ada beberapa teknik yang digunakan untuk mendukung keamanan Access point, antar lain: Service Set ID (SSID), Wired Equivalent privacy (WEP), MAC addresss, dan Extensible Authentication Protocol (EAP). Pada umumnya teknik-teknik tersebut tidak berdiri sendiri, melainkan dikombinasikan dengan teknik-teknik lainnya.
Untuk pengamanan jaringan, faktor yang sangat penting adalah pemilihan Access point yang baik. AP merupakan hal pertama yang perlu kita perhatikan dalam mengkonfigurasi keamanan jaringan wireless.
Hal pertama yang perlu kita pertimbangkan adalah kelancaran dan kekuatan sinyal serta penempatan access point. Untuk kelancaran sinyal, hal yang perlu diperhatikan adalah objek logam, rentang jarak, konstruksi gedung, jendela kaca dan material lain yang mempengaruhi kekuatan sinyal.
Komponen kedua adalah access point itu sendiri; lebih baik menamakan access point dengan tepat sehingga bisa ditelusuri dengan mudah jika terjadi troubleshooting. Access point harus dipasang di lokasi yang potensial untuk layanan yaitu tempat yang biasanya mudah dijangkau oleh user. Jika access point diletakkan di luar, maka peralatan tersebut harus diletakkan di tempat yang aman, dengan resiko kerusakan yang kecil.
Pada gambar 3 di bawah ini memperlihatkan output tools Kismet, yang menangkap keragaman jaringan. Attacker (penyerang) membuat sebuah access point yang memiliki nama (SSID dan MAC addresss) yang sama dengan yang ada di jaringan wireless yang sebenarnya. Access point yang palsu bisa saja memiliki sinyal yang lebih kuat yang mungkin jika si penyerang lebih dekat dengan target. Biasanya pemancar akan secara otomatis memilih access point, yang sinyalnya lebih kuat, sehingga target menjadi bingung dan memilih access point yang salah. Access point palsu tersebut dikenal dengan istilah rogue access point yang biasanya dimiliki oleh orang /organisasi yang tidak berhak menggunakan jaringan wireless. Access point tidak bisa mencegah adanya rogue access point.

3.3. Memperkuat Pengamanan WLAN
Hal-hal yang perlu diperhatikan dalam memperkuat pengamanan WLAN khususnya Access point :

    Sebaiknya tidak menggunakan WEP untuk enkripsi.
    WEP kurang aman, karena WEP tidak didesain untuk memberikan solusi pengamanan legkap untuk jaringan wireless. Jangan menggunakan WEP sebagai solusi keamanan. Gunakan WEP dikombinasikan dengan standar eknripsi lain untuk jaringan insecure lain seperti virtual private networks. Gunakan pengamanan level aplikasi seperti PGP untuk data penting.
    Memisahkan Jaringan Wireless dengan LAN
    WLAN menghadirkan tantangan keamanan yang berbeda dengan jaringan kabel LAN. WLANs biasanya kurang aman. Jangan biarkan adanya trafik diantara WLAN dan LAN di lingkungan yang dipercaya. Tempatkan firewall internal antara LAN dan WLAN, dan pastikan adanya autentikasi sebelum adanya trafik antara keduanya.
    Jangan menggunakan nama yang deskriptif untuk SSID atau Access point
    SSID and dan nama AP yang digunakan tidak dienkripsi pada paket data header 802.11x. Meskipun WEP dibuat enable, scanner WLAN dengan mudah menampilkan nama tersebut. Memberikan nama yang deskriptif seperti nama perusahaan, membuat pekerjaan seorang hacker menjadi lebih mudah untuk mengidentifikasi sumber sinyal.
    Daftarkan MAC addresss yang bisa menggunakan AP
    Banyak pabrik pembut AP yang memberikan kemampuan untuk mengidentifikasi MAC addresss dari kartu jaringan yang boleh menggunakan AP. Daftar MAC addresss yang berhak harus terus dijaga, tapi upaya pemeliharaan tersebut memberikan peningkatan keamanan. Ketika seorang hacker bisa mengidentifikasi AP dan secara pasif melakukan traffic sniff, maka dia tidak akan bisa terkoneksi ke host di jaringan tanpa mencuri MAC addresss yang sah.
    Rubah Kunci Enkripsi secara Periodik
    Merubah kunci enkripsi secara periodik tidak akan mencegah bahaya kunci WEP karena seorang penyerang bisa mengcrack kunci hanya dalam hitungan jam. Tetapi, perubahan kunci enkripsi akan membuat ancaman terhadap jaringan tidak akan bertahan selamanya. Seorang hacker selalu bisa mengcrack kunci enkripsi untuk kedua kalinya, tapi dengan merubah kunci akan menghambat sang hacker. Sayangnya, perubahan kunci akan memakan waktu baik bagi bagi AP dan setiap NIC wireless yang menggunkan AP harus dirubah secara manual. Implementasi dari rekomendasi ini tergantung pada nilai keamanan dan waktu layanan. Untungnya, beberapa vendor telah memperkenalkan solusi manajemen kunci otomatis dan 802.11i Task Group terus bekerja untuk membuat satndar.
    Disable Beacon Packet
    Beberapa AP menyediakan pilihan yang mencegah AP untuk mengumumkan keberadaanya melalui beacon packet secara periodik. AP tersebut mengharuskan wireless network cards untuk menggunakan SSID yang sama sebelum mereka merespon traffic. Bentuk ini mencegah hacker bisa melihat AP menggunakan WLAN scanning tools.
    Tempatkan AP di tengah
    Ketika merencanakan pemasangan AP di kantor, pertimbangkan range broadcast-nya. Pastikan sinyal cukup kuat untuk menjangkau semua tempat penting dalam gedung, tapi tidak membroadcast traffic ke tempat parkir atau ke kantor tetangga.
    Rubah Password / IP addresss standar
    Kebanyakan AP dibuat dengan fasilitas web server yang memungkinkan fasilitas console sebagai administrator. Tetapi sayangnya, hal ini juga memungkinkan seorang attacker dengan media wireless ataupun melalui kabel jaringan untuk mengakses console administrator AP dengan membuka web browser dan menuju ke alamat IP yang mengacu pada AP. Rubah alamat IP dan authentication credentials untuk AP. Alamat IP standar and authentication credentials sangatlah mudah didapat dengan mendownload dokumentasi pendukung dari web site vendor. WLAN scanning tool seperti NetStumbler, mengidentifikasi vendor hardware dengan membandingkan MAC addresss yang di-broadcast dengan daftar di IEEE. Jika seorang attacker bisa mengakses console admnistrator AP dan password standarnya tidak dirubah, maka si attcker bisa mendisablekan semua seting keamanan atau bisa mengakibatkan denial of service dengan merubah setingan misalnya channel atau SSID. Hal ini mencegah client menggunakan access point.
    Hindari kelemahan kunci WEP
    Vendor mulai menyediakan produk upgrade untuk produk 802.11b yang menggunakan IV yang juga disebut interesting packets (aka weak keys) yang ditujukan untuk tools seperti AirSnort. Hal ini akan efektif jika semua produk wireless di jaringan di upgrade sebagai stasiun transmisi yang selalu menentukan IV yang digunakan.
    Jangan menggunakan DHCP pada WLAN
    Untuk mengakses host yang menjadi target, seorang hacker membutuhkan IP addresss yang valid serta subnet mask pada WLAN. Meskipun untuk mengindentifikasi IP addresss yang valid di suatu jaringan tidak terlalu susah, tapi dengan begitu kita tidak terlalu memudahkan hacker. Tanpa DHCP, mengindentifikasi alamat IP membutuhkan sniffing traffic yang secara pasif memeriksa dan menangkap paket. Seorang hacker juga menggunakan metoda brute force, sebagai batasan range dari nomor private addresss. Singkatnya, seorang hacker bisa mengindentifikasi alamat yang valid dan subnet mask meskipun DHCP ada ataupun tidak, tapi alamat IP statis merupakan salah satu penangkal yang mungkin mengakibatkan seorang hacker berpindah untuk mencari jaringan yang lebih kurang aman.
    Identifikasi Rogue Access point
    Pada perusahaan besar, end users bisa lebih mengkuatirkan dengan menyebarkan hardware atau software mereka. Hanya seorang karyawan perusahaan yang menginstal modem untuk memungkinkan remote access dari rumah, karyawan tersebut juga mungkin menambahkan jaringan wireless untuk surfing web. Harga yang murah untuk alat-alat yang dibutuhkan dan kemudahan instalasi menjadi masalah besar bagi administrator jaringan.

4. KESIMPULAN
Dari hasil pembahasan di atas, maka dapat disimpulkan :

    Wireless networks tidak saja menawarkan kenyamanan tetapi juga mimpi buruk jika tidak digunakan secara tepat.
    Disarankan untuk mengamankan wireless LAN dengan pendekatan layer, yang dimulai dengan layer fisik. Selain itu tetap penting untuk terus mengimplementasikan metoda yang tepat di layer lainnya di jaringan untuk mendapatkan jaringan wireless yang lebih aman dan optimal.
    Access point yang baik merupakan faktor utama untuk mendapatkan keamanan jaringan wireless yang baik. Metodologi pertahanan harus diperhitungkan seperti, MAC addresss, SSID, WEP, WPA, dan (EAP). Teknik-teknik tersebut digunakan untuk memberikan tingkat keamanan yang standar.
    Masih ada beberapa kelemahan dari penggunaan teknik-teknik yang dijelaskan tersebut yang bisa dimanfaatkan oleh orang lain yang tidak berhak sehingga teknik-teknik tersebut perlu dikaji ulang atau mungkin menerapkan teknik lain yang lebih baik sehingga komunikasi melalui jaringan nirkabel menjadi lebih aman.

5. DAFTAR RUJUKAN

    Ahmad, Z., 2003, Wireless Security in Health Care, Proceedings of the First Australian Undergraduate Students’ Computing Conference, 2003
    Drew, W., Managing Technology Wireless Networks: new Meaning to Ubiquitous Computing, http://www.springerlink.com/index/FGWEF1BF6D47YB4T.pdf, diakses November 2006
    Earle, A.E. , 2006, Wireless Security Handbook, Auerbach Publications Taylor & Francis Group, New York
    Fernandez, E.B., Jawhar, I.. Petrrie. VanHilst, M., 2004, An overview of the security wireless network, Version of November 19, 2004, http://csrc.nist.gov/publications/nistpubs/800-48/NIST_SP_800-48.pdf, diakses November 2006
    Manivannan, N. dan Neelameham, P., 2006, Wireless Security Techniques, Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2006 No.2(9)
    Sutton, M., Hacking the Invisible Network Insecurities in 802.11x, 2002, iALERT White Paper, iDEFENSE Labs
    Tung, S.S, Ahmad, N.N., Geok, T.K., 2006, Wireless LAN Security: Securing Your Access point, IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

Tuesday, December 20, 2011

Facebook-an Gratis Dengan 0.facebook.com dan zero.facebook.com

0.facebook.com  Facebook an Gratis Dengan 0.facebook.com dan zero.facebook.com

0.facebook.com / zero.facebook.com

0.facebook.com atau zero.facebook.com, fitur baru dari Facebook yang memungkinkan kamu untuk mengakses Facebook secara GRATIS sepuasnya sepanjang hari. Saya pun sudah mencobanya. Untuk menikmati GRATIS akses Facebook Mobile via 0.facebook.com atau zero.facebook.com, saat ini baru untuk pelanggan operator seluler AXIS, Three (3), Telkomsel, Indosat dan XL. Saya sendiri menggunakan operator Three (3). 
Sedikit cerita dari saya. Saya mencoba mengakses 0.facebook.com via browser Opera Mini (versi 5) di ponsel saya ternyata gagal, terdapat pesan seperti berikut: “0.facebook.com tidak kompatibel dengan peramban (browser) Anda”. Lalu saya mencoba mengakses via WAP Browser, dan ternyata berhasil. Jadi kemungkinan 0.facebook.com atau zero.facebook.com hanya kompatibel dengan WAP Browser atau browser bawaan HP.

Sekilas mengenai 0.facebook.com atau zero.facebook.com

0.facebook.com atau zero.facebook.com dibuat seperti m.facebook.com. Bedanya, jika di m.facebook.com kita bisa melihat foto teman facebook kita, sedangkan di 0.facebook.com atau zero.facebook.com hanya disuguhkan akses Facebook dalam bentuk text saja. Kalau kita ingin mengakses atau melihat foto teman facebook kita, terlebih dahulu kita akan diberikan informasi berupa persetujuan bahwa kita akan dibawa menuju akses ke m.facebook.com dan akan dikenakan biaya sesuai dengan biaya akses data internet operator yang kita gunakan.
Meskipun begitu, puas kan bisa akses Facebook gratis sepuasnya sepanjang hari?
Kalau belum coba, monggo silakan dicoba. Tapi jangan lupa, akses Facebook gratis via 0.facebook.com atau zero.facebook.com saat ini baru dikhususkan untuk pelanggan operator seluler AXIS, Three (3),  Telkomsel, Indosat dan XL. Kalau operator yang kamu pakai belum men-support, demo aja operatornya. Hehehehe…… Jangan lupa, facebook gratis ini hanya bisa diakses dengan WAP Browser (browser bawaan HP). Kalau bisa akses zero.facebook.com atau 0.facebook.com via Opera Mini atau browser lainnya, tolong share lewat comment.

Tuesday, December 6, 2011

Masa Depan Bumi Saat Matahari Berevolusi

Perubahan iklim dan pemanasan global yang terjadi akhir-akhir ini menjadi salah satu efek yang sangat signifikan dalam perubahan kondisi Bumi selama beberapa dekade dan abad ke depan. Namun, bagaimana dengan nasib Bumi jika terjadi pemanasan bertahap saat Matahari menuju masa akhir hidupnya sebagai bintang katai putih? Akankah Bumi bertahan, ataukah masa tersebut akan menjadi masa akhir kehidupan Bumi?
Bintang Raksasa Merah. Impresi artis. source : Universetoday
Milyaran tahun lagi, Matahari akan mengembang menjadi bintang raksasa merah. Saat itu, ia akan membesar dan menelan orbit Bumi. Akankah Bumi ditelan oleh Matahari seperti halnya Venus dan Merkurius? Pertanyaan ini telah menjadi diskusi panjang di kalangan astronom. Akankah kehidupan di Bumi tetap ada saat matahari menjadi Katai Putih?
Berdasarkan perhitungan yang dilakukan K.-P. Schr¨oder dan Robert Connon Smith, ketika Matahari menjadi bintang raksasa merah, ekuatornya bahkan sudah melebihi jarak Mars. Dengan demikian, seluruh planet dalam di Tata Surya akan ditelan olehnya. Akan tiba saatnya ketika peningkatan fluks Matahari juga meningkatkan temperatur rata-rata di Bumi sampai pada level yang tidak memungkinkan mekanisme biologi dan mekanisme lainnya tahan terhadap kondisi tersebut.
Saat Matahari memasuki tahap akhir evolusi kehidupannya, ia akan mengalami kehilangan massa yang besar melalui angin bintang. Dan saat Matahari bertumbuh (membesar dalam ukuran), ia akan kehilangan massa sehingga planet-planet yang mengitarinya bergerak spiral keluar. Lagi-lagi pertanyaannya bagaimana dengan Bumi? Akankah Matahari yang sedang mengembang itu mengambil alih planet-planet yang bergerak spiral, atau akankah Bumi dan bahkan Venus bisa lolos dari cengkeramannya?
Perhitungan yang dilakukan oleh K.-P Schroder dan Robert Cannon Smith menunjukan, saat Matahari menjadi bintang raksasa merah di usianya yang ke 7,59 milyar tahun, ia akan mulai mengalami kehilangan massa. Matahari pada saat itu akan mengembang dan memiliki radius 256 kali radiusnya saat ini dan massanya akan tereduksi sampai 67% dari massanya sekarang. Saat mengembang, Matahari akan menyapu Tata Surya bagian dalam dengan sangat cepat, hanya dalam 5 juta tahun. Setelah itu ia akan langsung masuk pada tahap pembakaran helium yang juga akan berlangsung dengan sangat cepat, hanya sekitar 130 juta tahun. Matahari akan terus membesar melampaui orbit Merkurius dan kemudian Venus. Nah, pada saat Matahari akan mendekati Bumi, ia akan kehilangan massa 4.9 x 1020 ton setiap tahunnya (setara dengan 8% massa Bumi).
Perjalanan evolusi Matahari sejak lahir sampai menjadi bintang katai putih.
Setelah mencapai tahap akhir sebagai raksasa merah, Matahari akan menghamburkan selubungnya dan inti Matahari akan menyusut menjadi objek seukuran Bumi yang mengandung setengah massa yang pernah dimiliki Matahari. Saat itu, Matahari sudah menjadi bintang katai putih. Bintang kompak ini pada awalnya sangat panas dengan temperatur lebih dari 100 ribu derajat namun tanpa energi nuklir, dan ia akan mendingin dengan berlalunya waktu seiring dengan sisa planet dan asteroid yang masih mengelilinginya.
Zona Laik Huni yang Baru
Saat ini Bumi berada di dalam zona habitasi / laik huni dalam Tata Surya. Zona laik huni atau habitasi merupakan area di dekat bintang di mana planet yang berada di situ memiliki air berbentuk cair di permukaannya dengan temperatur rata-rata yang mendukung adanya kehidupan. Dalam perhitungan yang dilakukan Schroder dan Smith, temperatur planet tersebut bisa menjadi sangat ekstrim dan tidak nyaman untuk kehidupan, namun syarat utama zona habitasinya adalah keberadaan air yang cair.
Terbitnya bintang raksasa merah. Impresi artis. Sumber: Jeff Bryant's Space Art.
Tak dapat dipungkiri, saat Matahari jadi Raksasa Merah, zona habitasi akan lenyap dengan cepat. Saat Matahari melampaui orbit Bumi dalam beberapa juta tahun, ia akan menguapkan lautan di Bumi dan radiasi Matahari akan memusnahkan hidrogen dari air. Saat itu Bumi tidak lagi memiliki lautan. Tetapi, suatu saat nanti, ia akan mencair kembali. Nah saat Bumi tidak lagi berada dalam area habitasi, lantas bagaimana dengan kehidupan di dalamnya? Akankah mereka bertahan atau mungkin beradaptasi dengan kondisi yang baru tersebut? Atau itulah akhir dari perjalanan kehidupan di planet Bumi?
Yang menarik, meskipun Bumi tak lagi berada dalam zona habitasi, planet-planet lain di luar Bumi akan masuk dalam zona habitasi baru milik Matahari dan mereka akan berubah menjadi planet layak huni. Zona habitasi yang baru dari Matahari akan berada pada kisaran 49,4 SA – 71,4 SA. Ini berarti areanya akan meliputi juga area Sabuk Kuiper, dan dunia es yang ada disana saat ini akan meleleh. Dengan demikian objek-objek disekitar Pluto yang tadinya mengandung es sekarang justru memiliki air dalam bentuk cairan yang dibutuhkan untuk mendukung kehidupan. Bahkan bisa jadi Eris akan menumbuhkan kehidupan baru dan menjadi rumah yang baru bagi kehidupan.
Bagaimana dengan Bumi?
Apakah ini akhir perjalanan planet Bumi? Ataukah Bumi akan selamat? Berdasarkan perhitungan Schroder dan Smith Bumi tidak akan bisa menyelamatkan diri. Bahkan meskipun Bumi memperluas orbitnya 50% dari orbit yang sekarang ia tetap tidak memiliki pluang untuk selamat. Matahari yang sedang mengembang akan menelan Bumi sebelum ia mencapai batas akhir masa sebagai raksasa merah. Setelah menelan Bumi, Matahari akan mengembang 0,25 SA lagi dan masih memiliki waktu 500 ribu tahun untuk terus bertumbuh.
Matahari yang menjadi raksasa merah akan mengisi langit seperti yang tampak dari bumi. Gambar ini menunjukan topografi Bumi yang sudah meleleh menjadi lava. Tampak siluet bulan dengan latar raksasa merah. Copyright William K. Hartmann
Saat Bumi ditelan, ia akan masuk ke dalam atmosfer Matahari. Pada saat itu Bumi akan mengalami tabrakan dengan partikel-partikel gas. Orbitnya akan menyusut dan ia akan bergerak spiral kedalam. Itulah akhir dari kisah perjalanan Bumi.
Sedikit berandai-andai, bagaimana menyelamatkan Bumi? Jika Bumi berada pada jarak 1.15 SA (saat ini 1 SA) maka ia akan dapat selamat dari fasa pengembangan Matahari tersebut. Nah bagaimana bisa membawa Bumi ke posisi itu?? Meskipun terlihat seperti kisah fiksi ilmiah, namun Schroder dan Smith menyarankan agar teknologi masa depan dapat mencari cara untuk menambah kecepatan Bumi agar bisa bergerak spiral keluar dari Matahari menuju titik selamat tersebut.
Yang menarik untuk dikaji adalah, umat manusia seringkali gemar berbicara tentang masa depan Bumi milyaran tahun ke depan, padahal di depan mata, kerusakan itu sudah mulai terjadi. Bumi saat ini sudah mengalami kerusakan awal akibat ulah manusia, dan hal ini akan terus terjadi. Bisa jadi akhir perjalanan Bumi bukan disebabkan oleh evolusi matahari, tapi oleh ulah manusia itu sendiri. Tapi bisa jadi juga manusia akan menemukan caranya sendiri untuk lolos dari situasi terburuk yang akan dihadapi.
Sumber : Arxiv : Distant future of the Sun and Earth revisited

Tidak Ada Kiamat di Tahun 2012

Hmm … sepertinya banyak juga ya penggemar kiamat 2012. Ada apa sebenarnya, sehingga manusia sangat tertarik dan percaya dengan mudah pada isu-isu seperti ini?
Katanya, dunia akan berakhir pada tanggal 21 Desember 2012! Runutan angka yang menarik yang membuat Anda langsung terperangah dan menggumam, “Ah benar juga … pasti bener nih beritanya”. Lantas, tanpa telaah lanjut, Anda pun berkata kiamat tinggal 3 tahun lagi. Atau kalau Anda tak percaya teori kiamat, Anda langsung berkomentar, “Cuma Tuhan yang tahu kapan kiamat”, “Ah kamu musyrik …”, atau “Itu info disebarkan oleh orang tak beragama”.  Sekali lagi, semua informasi hanya ditelan tanpa ditelaah.
Piramida peninggalan suku Maya. kredit : whoyoucallingaskeptic.wordpress.com
Piramida peninggalan suku Maya. kredit : whoyoucallingaskeptic.wordpress.com
Nah, karena dunia akan kiamat sebentar lagi, berhentilah merencanakan hidup, karier Anda, tak usah lagi berpikir untuk punya rumah, segeralah menikah sebelum kiamat, dan pastikan Anda bisa bersenang-senang menikmati hidup sebelum kiamat. Atau, segeralah bertobat. Jangan sampai saat kiamat Anda malah belum bertobat. Tiga tahun lagi lho!.
Kata sebagian orang, mungkin ini pembahasan yang aneh. Hampir setiap saat kita mendengar tentang berbagai teori kiamat … dan kenyataannya kita masih ada di sini. Belum ada satu teori pun yang kebenarannya terbukti. Tapi, kenapa 2012 begitu penting?
Katanya, kalender Maya akan berhenti tahun 2012, dan kemudian jadi semacam agama dan kepercayaan baru, mengalahkan kepercayaan yang ada di masyarakat. Mengabaikan semua alasan saintifik dan pada akhirnya membawa masyarakat pada kekhawatiran baru. Lupakan Nostradamus, Y2k, dan semua prediksi kiamat lainnya, karena sekali lagi menurut ramalan 2012, planet X akan kembali dan menghancurkan Bumi.
Ok … kita berhenti dulu di sini dan mari kita telaah setiap alasan yang muncul tentang kiamat 2012 ini. Dan bagi Anda para penggemar nubuat Kalender Maya, saya punya berita buruk untuk Anda semua. Tidak akan ada kiamat di tahun 2012 …  dan ini alasannya, silakan disimak.
Kalender Maya
Kalender Maya
Kalender Maya
Apa itu kalender Maya? Ini merupakan kalender yang disusun oleh sebuah peradaban yang dikenal dengan nama Maya pada kisaran 250-900 M. Bukti kehadiran peradaban Suku Maya ini bisa dilihat dari sisa kerajaannya di hampir semua bagian selatan Meksiko, Guatemala, Belize, El Savador, dan sebagian Honduras.
Dari bukti-bukti sejarah, masyarakat suku Maya memang memiliki kemampuan menulis yang baik dan juga kemampuan untuk membangun kota dan perencanaan kota. Dalam hal membangun, Suku Maya terkenal dengan bangunan piramida dan berbagai bangunan besar lainnya. Tak hanya itu, dalam kebudayaan, peradaban suku Maya memberi pengaruh yang sangat besar pada kebudayaan Amerika Tengah. Pengaruh itu bukan hanya dalam hal peradaban namun juga dalam hal populasi pribumi di area tersebut. Sampai saat ini, sejumlah Suku Maya masih tetap ada dan meneruskan tradisi mereka yang telah berumur ribuan tahun itu.
Suku Maya dalam kehidupannya menggunakan beberapa kalender berbeda. Bagi mereka, waktu merupakan penghubung dengan lingkaran spiritual. Kalender memang digunakan untuk hal-hal praktis seperti untuk kehidupan sosial, pertanian, perdagangan dan berbagai keperluan administratif. Namun dipercaya ada elemen religi yang besar di dalamnya yang memberi pengaruh. Bagi suku Maya, setiap hari memiliki ruh pelindung yang berbeda sehingga setiap hari memiliki fungsi yang berbeda pula. Sangat berbeda dengan kehidupan modern dengan kalender Gregorian yang hanya menetapkan kalender sebagai waktu yang terkait dengan hal-hal administratif, kehidupan sosial dan keperluan ekonomi.
Kebanyakan kalender Maya memiliki rentang waktu pendek.
  • Kalender Tzolk’in berakhir dalam 260 hari
  • Kalender Haab’ memberi perkiraan 1 tahun Matahari yakni 365 hari.
Suku Maya kemudian menggabungkan kedua kalender ini membentuk “Calendar Round”, siklus yang akan berakhir setelah 52 Haab (sekitar 52 tahun atau kisaran panjangnya satu generasi). Di dalam “Calendar round” terdapat Trecena ( siklus 13 hari) dan Veintena (siklus 20 hari). Tampaknya, sistem siklus ini berlaku dengan mempertimbangkan jumlah hari dalam 52 tahun adalah 18980 hari.
Untuk bangsa Maya, sains dan agama adalah satu. Mereka membangun sistem matematika dan astronomi yang cukup impresif, terkait dengan kepercayaan mereka. Pencapaian dalam hal matematika bisa dilihat pada notasi posisi dan penggunaan angka nol. Dalam astronomi, mereka secara akurat menghitung tahun Matahari, melakukan kompilasi tabel posisi bulan dan Venus, serta memprediksi Gerhana Matahari. Suku Maya juga memiliki penanggalan untuk “siklus Venus” yang cukup akurat. Kalender Venus ini dibuat berdasarkan lokasi Venus di langit malam. Hal yang sama tampaknya juga dilakukan pada planet-planet lainnya.
Sistem “Calendar Round” ini memang sangat baik untuk mengingat hari kelahiran atau periode keagamaan. Namun, untuk merekam sejarah, kalender ini tak bisa dijadikan patokan karena tak dapat merekam kejadian yang lebih tua dari 52 tahun.
Akhir Perhitungan Panjang = Akhir Dunia?
Alam semesta menurut suku Maya. Kredit : edwardtbabinski.us
Alam semesta menurut suku Maya. Kredit : edwardtbabinski.us
Karena tak bisa merekam kejadian sejarah yang lebih tua dari 52 tahun, Suku Maya punya solusi lain. Dengan metode yang cukup inovatif, mereka bisa memperluas jangkauan “Calendar Round” yang tadinya cuma 52 tahun itu.
Sampai di titik ini, kalender Maya akan tampak sangat kuno, bahkan bisa dikatakan dibuat hanya berdasarkan kepercayaan religi, siklus bulan, kalkulasi matematika dengan siklus atau unit 13 dan 20 sebagai dasar perhitungan disertai campuran kepercayaan mitologi. Satu-satunya prinsip kalender yang memiliki korelasi dengan kalender modern hanyalah Haab yang mengenali panjang tahun Matahari yakni 365 hari. Sebagai jawaban atas penanggalan yang lebih panjang, Suku Maya membuat sistem penanggalan “Long Count” atau “Perhitungan Panjang”, kalender yang akan berakhir setelah 5126 tahun.
Sistem penanggalan Maya untuk “Long Count” ini memang menarik, dan secara numerik dapat diprediksi dan bisa dengan akurat menunjuk pada penanggalan dalam sejarah. Penanggalan ini bergantung pada basik perhitungan dengan unit 20. Kalender modern saat ini menggunakan dasar perhitungan dengan unit 10.
Nah bagaimana perhitungannya?
Tahun dalam “Long Count” kalender Maya, dimulai dari 0.0.0.0.0. Tiap angka 0 merepresentasikan angka 0-19, dan setiap angka merepresentasikan perhitungan hari-hari suku Maya.
Untuk hari pertama, kalendernya akan seperti ini : 0.0.0.0.1 dan pada hari ke-19 akan menjadi 0.0.0.0.19. Jika mencapai angka 20, kalendernya akan jadi : 0.0.0.1.0. Perhitungan ini akan menunjukkan 0.0.1.0.0 untuk satu tahun dan 0.1.0.0.0 untuk kisaran 20 tahun dan 1.0.0.0.0 utuk kisaran 400 tahun. Maka, penanggalan 2.10.12.7.1 akan melambangkan penanggalan untuk hari ke-1 di bulan ke-7 dan tahun 1012.
Lantas, apa hubungannya dengan akhir dunia?
Suku Maya sangat terobsesi dengan waktu. Pemahaman dan prediksi berbagai siklus waktu akan memberi mereka kemampuan untuk mengadaptasinya dalam kehidupan di dunia. Menurut kosmologi bangsa Maya, dunia ini telah diciptakan 5 kali dan dihancurkan 4 kali. Dalam skala yang sementara, berbagai hari di dalam satu tahun dianggap cocok untuk aktivitas tertentu, sedangkan sebagian lainnya merupakan ketidakberuntungan.
Nah, menurut kepercayaan suku Maya, sesuatu yang buruk akan terjadi jika kalender “Long Count” berakhir. Berbagai pembagian dilakukan para ahli, namun karena suku Maya mendasarkan perhitungan numerik pada siklus 13 dan 20, maka bisa jadi hari terakhir kalender mereka adalah 13.0.0.0.0. Kapankah itu? Angka 13.0.0.0.0 merepresentasikan 5126 tahun dan “Long Count” ini berawal pada 0.0.0.0.0 yakni 11 Agustus 3114 SM menurut penanggalan Gregorian.
Nah, dengan demikian, kalender Maya akan berakhir 5126 tahun kemudian, yakni 21 Desember 2012. Inilah yang jadi dasar pemikiran tentang kiamat di tahun 2012.
Akhir Dunia
Ilustrasi tabrakan yang terjadi. Kredit : NASA
Ilustrasi tabrakan yang terjadi. Kredit : NASA
Sepertinya, saat sesuatu itu berakhir, termasuk ketika perhitungan kalender kuno berakhir, masyarakat cenderung berpikir pada kemungkinan ekstrem bahwa peradaban juga akan ikut berakhir. Entah dengan cara apa dunia akan berakhir. Berbagai argumentasi bermunculan, antara lain Bumi akan ditabrak oleh sebuah planet, asteroid, atau entah bencana apalagi. Intinya, jika kalender ini berakhir maka Bumi akan tersapu dan hancur.
Ahli arkeologi dan juga orang-orang yang keahliannya pada hal mitologi percaya bahwa akan ada era pencerahan yang muncul jika 13.0.0.0.0 tiba. Dan ini juga tidak berarti akan kiamat atau apa pun. Tidak ada bukti yang menunjukkan dunia akan berakhir. Bahkan, jika memang ada, maka suku Maya bisa dikatakan berhasil memprediksikan sebuah keajaiban religius.
Mitos terus berkembang, bahkan film Indiana Jones and the Kingdom of Crystal Skull sepertinya dibuat berdasarkan mitos suku Maya. Dikatakan, 13 tengkorak kristal akan dapat menyelamatkan kemanusiaan dari kiamat. Mitos di film ini mengatakan jika ke-13 tengkorak kuno ini tidak diletakkan bersama pada waktu tertentu, Bumi akan bergeser dari sumbunya. Menarik memang untuk sebuah film, bisa meraih penontonnya yang mudah percaya pada mitos ….
Tak hanya itu. Mitos yang berkembang mengatakan bahwa Bumi akan dihancurkan oleh tabrakan Planet X, tabrakan meteorit, dihisap lubang hitam, dibunuh oleh flare Matahari, Bumi hancur oleh ledakan sinar gamma dari sistem bintang, datangnya zaman es yang lebih cepat dan pergeseran kutub magnet. Bahkan setiap prediksi disertai bukti-buktinya sendiri. Dan pada akhirnya begitu banyak pengikut kiamat 2012 ini. Sayangnya tak satu pun argumentasi yang diberikan itu bisa dibuktikan kebenarannya.
Fakta yang ada menyatakan Nubuat Kiamat Suku Maya murni berdasarkan kalender yang memang tidak didesain untuk menghitung penanggalan setelah 2012. Hal ini disebabkan karena suku Maya mendasarkan perhitungan pada siklus 13 dan 20.
Arkeo-astronom Maya bahkan masih memperdebatkan masalah kalender “Long Count” ini. Pertanyaannya, apakah kalender ini akan kembali ke 0.0.0.0.0 setelah 13.0.0.0.0 atau akan terus berlanjut sampai 20.0.0.0.0 (sekitar 8000M) dan kemudian kembali ke 0.0.0.0.0?
Mengutip kata-kata Karl Kruszelnicki dalam “Great Moments in Science“:
“ … ketika Kalender mengakhiri siklusnya, ia akan berputar kembali ke siklus berikutnya. Dalam masyarakat modern, setiap tanggal 31 Desember tidak diakhiri dengan akhir dunia, namun dilanjutkan oleh siklus berikut yakni 1 Januari. Karena itu, 13.0.0.0.0 dalam kalender Maya akan diikuti oleh 0.0.0.0.1 atau 22 desember 2012, yang hanya menyisakan beberapa hari untuk berbelanja keperluan Natal.”
Siklus kalender Maya boleh berakhir, namun siklus baru akan kembali berulang … dan membawa hari baru bagi penghuni Bumi.

Global Warming – Apa dan mengapa ?

global_warming.gifSejak dikenalnya ilmu mengenai iklim, para ilmuwan telah mempelajari bahwa ternyata iklim di Bumi selalu berubah. Dari studi tentang jaman es di masa lalu menunjukkan bahwa iklim bisa berubah dengan sendirinya, dan berubah secara radikal. Apa penyebabnya? Meteor jatuh? Variasi panas Matahari? Gunung meletus yang menyebabkan awan asap? Perubahan arah angin akibat perubahan struktur muka Bumi dan arus laut? Atau karena komposisi udara yang berubah? Atau sebab yang lain?
Sampai baru pada abad 19, maka studi mengenai iklim mulai mengetahui tentang kandungan gas yang berada di atmosfer, disebut sebagai gas rumah kaca, yang bisa mempengaruhi iklim di Bumi. Apa itu gas rumah kaca?
Sebetulnya yang dikenal sebagai ‘gas rumah kaca’, adalah suatu efek, dimana molekul-molekul yang ada di atmosfer kita bersifat seperti memberi efek rumah kaca. Efek rumah kaca sendiri, seharusnya merupakan efek yang alamiah untuk menjaga temperatur permukaaan Bumi berada pada temperatur normal, sekitar 30°C, atau kalau tidak, maka tentu saja tidak akan ada kehidupan di muka Bumi ini.
Pada sekitar tahun 1820, bapak Fourier menemukan bahwa atmosfer itu sangat bisa diterobos (permeable) oleh cahaya Matahari yang masuk ke permukaan Bumi, tetapi tidak semua cahaya yang dipancarkan ke permukaan Bumi itu bisa dipantulkan keluar, radiasi merah-infra yang seharusnya terpantul terjebak, dengan demikian maka atmosfer Bumi menjebak panas (prinsip rumah kaca).
Tiga puluh tahun kemudian, bapak Tyndall menemukan bahwa tipe-tipe gas yang menjebak panas tersebut terutama adalah karbon-dioksida dan uap air, dan molekul-molekul tersebut yang akhirnya dinamai sebagai gas rumah kaca, seperti yang kita kenal sekarang. Arrhenius kemudian memperlihatkan bahwa jika konsentrasi karbon-dioksida dilipatgandakan, maka peningkatan temperatur permukaan menjadi sangat signifikan.
Semenjak penemuan Fourier, Tyndall dan Arrhenius tersebut, ilmuwan semakin memahami bagaimana gas rumah kaca menyerap radiasi, memungkinkan membuat perhitungan yang lebih baik untuk menghubungkan konsentrasi gas rumah kaca dan peningkatan Temperatur. Jika konsentrasi karbon-dioksida dilipatduakan saja, maka temperatur bisa meningkat sampai 1°C.
Tetapi, atmosfer tidaklah sesederhana model perhitungan tersebut, kenyataannya peningkatan temperatur bisa lebih dari 1°C karena ada faktor-faktor seperti, sebut saja, perubahan jumlah awan, pemantulan panas yang berbeda antara daratan dan lautan, perubahan kandungan uap air di udara, perubahan permukaan Bumi, baik karena pembukaan lahan, perubahan permukaan, atau sebab-sebab yang lain, alami maupun karena perbuatan manusia. Bukti-bukti yang ada menunjukkan, atmosfer yang ada menjadi lebih panas, dengan atmosfer menyimpan lebih banyak uap air, dan menyimpan lebih banyak panas, memperkuat pemanasan dari perhitungan standar.
Sejak tahun 2001, studi-studi mengenai dinamika iklim global menunjukkan bahwa paling tidak, dunia telah mengalami pemanasan lebih dari 3°C semenjak jaman pra-industri, itu saja jika bisa menekan konsentrasi gas rumah kaca supaya stabil pada 430 ppm CO2e (ppm = part per million = per satu juta ekivalen CO2 – yang menyatakan rasio jumlah molekul gas CO2 per satu juta udara kering). Yang pasti, sejak 1900, maka Bumi telah mengalami pemanasan sebesar 0,7°C.
Lalu, jika memang terjadi pemanasan, sebagaimana disebut; yang kemudian dikenal sebagai pemanasan global, (atau dalam istilah populer bahasa Inggris, kita sebut sebagai Global Warming): Apakah merupakan fenomena alam yang tidak terhindarkan? Atau ada suatu sebab yang signfikan, sehingga menjadi ‘populer’ seperti sekarang ini? Apakah karena Al Gore dengan filmnya “An Inconvenient Truth” yang mempopulerkan global warming? Tentunya tidak sesederhana itu.
Perlu kerja-sama internasional untuk bisa mengatakan bahwa memang manusia-lah yang menjadi penyebab utama terjadinya pemanasan global. Laporan IPCC (Intergovernmental Panel on Climate Change) tahun 2007, menunjukkan bahwa secara rata-rata global aktivitas manusia semenjak 1750 menyebabkan adanya pemanasan. Perubahan kelimpahan gas rumah kaca dan aerosol akibat radiasi Matahari dan keseluruhan permukaan Bumi mempengaruhi keseimbangan energi sistem iklim. Dalam besaran yang dinyatakan sebagai Radiative Forcing sebagai alat ukur apakah iklim global menjadi panas atau dingin (warna merah menyatakan nilai positif atau menyebabkan menjadi lebih hangat, dan biru kebalikannya), maka ditemukan bahwa akibat kegiatan manusia-lah (antropogenik) yang menjadi pendorong utama terjadinya pemanasan global (Gb.1).
Hasil perhitungan perkiraan agen pendorong terjadinya pemanasan global dan mekanismenya (kolom satu), berdasarkan pengaruh radiasi (Radiative Forcing), dalam satuan Watt/m^2, untuk sumber antropogenik dan sumber yang lain, tanda merah dan nilai positif dari kolom dua dan tiga berarti sumbangan pada pemanasan, sedangkan biru adalah efek kebalikannya. Kolom empat menyatakan dampak pada skala geografi, sedangkan kolom kelima menyatakan tingkat pemahaman ilmiah (Level of Scientific Understanding), Sumber: Laporan IPCC, 2007.
Dari gambar terlihat bahwa karbon-dioksida adalah penyumbang utama gas kaca. Dari masa pra-industri yang sebesar 280 ppm menjadi 379 ppm pada tahun 2005. Angka ini melebihi angka alamiah dari studi perubahan iklim dari masa lalu (paleoklimatologi), dimana selama 650 ribu tahun hanya terjadi peningkatan dari 180-300 ppm. Terutama dalam dasawarsa terakhir (1995-2005), tercatat peningkatan konsentrasi karbon-dioksida terbesar pertahun (1,9 ppm per tahun), jauh lebih besar dari pengukuran atmosfer pada tahun 1960, (1.4 ppm per tahun), kendati masih terdapat variasi tahun per tahun.
Sumber terutama peningkatan konsentrasi karbon-dioksida adalah penggunaan bahan bakar fosil, ditambah pengaruh perubahan permukaan tanah (pembukaan lahan, penebangan hutan, pembakaran hutan, mencairnya es). Peningkatan konsentrasi metana (CH4), dari 715 ppb (part per billion= satu per milyar) di jaman pra-industri menjadi 1732 ppb di awal 1990-an, dan 1774 pada tahun 2005. Ini melebihi angka yang berubah secara alamiah selama 650 ribu tahun (320 – 790 ppb). Sumber utama peningkatan metana pertanian dan penggunaan bahan bakar fosil. Konsentrasi nitro-oksida (N2O) dari 270 ppb – 319 ppb pada 2005. Seperti juga penyumbang emisi yang lain, sumber utamanya adalah manusia dari agrikultural. Kombinasi ketiga komponen utama tersebut menjadi penyumbang terbesar pada pemanasan global.
Kontribusi antropogenik pada aerosol (sulfat, karbon organik, karbon hitam, nitrat and debu) memberikan efek mendinginkan, tetapi efeknya masih tidak dominan dibanding terjadinya pemanasan, disamping ketidakpastian perhitungan yang masih sangat besar. Demikian juga dengan perubahan ozon troposper akibat proses kimia pembentukan ozon (nitrogen oksida, karbon monoksida dan hidrokarbon) berkontribusi pada pemanasan global. Kemampuan pemantulan cahaya Matahari (albedo), akibat perubahan permukaan Bumi dan deposisi aerosol karbon hitam dari salju, mengakibatkan perubahan yang bervariasi, dari pendinginan sampai pemanasan. Perubahan dari pancaran sinar Matahari (solar irradiance) tidaklah memberi kontribusi yang besar pada pemanasan global.
Dengan demikian, maka dapat dipahami bahwa memang manusia yang berperanan bagi nasibnya sendiri, karena pemanasan global terjadi akibat perbuatan manusia sendiri. Lalu bagaimana dampak Global Warming bagi kehidupan? Alur waktu prediksi dan dampak dari perspektif sains dapat dibaca pada bagian kedua tulisan ini.

Sumber : Langit slatan

Apa pendapat anda dengan BLOG ini ?